skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance. However, achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions. In-situ transmission electron microscopy (TEM) is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments. These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries. This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems, including atomic-scale structural imaging, strain field imaging, electron holography, and integrated differential phase contrast imaging. Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution, ionic valence state changes, and strain mapping, ion transport dynamics. The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Diffusion models (DMs) are a class of generative models that allow sampling from a distribution learned over a training set. When applied to solving inverse problems, the reverse sampling steps are modified to approximately sample from a measurement-conditioned distribution. However, these modifications may be unsuitable for certain settings (e.g., presence of measurement noise) and non-linear tasks, as they often struggle to correct errors from earlier steps and generally require a large number of optimization and/or sampling steps. To address these challenges, we state three conditions for achieving measurement-consistent diffusion trajectories. Building on these conditions, we propose a new optimization-based sampling method that not only enforces standard data manifold measurement consistency and forward diffusion consistency, as seen in previous studies, but also incorporates our proposed step-wise and network-regularized backward diffusion consistency that maintains a diffusion trajectory by optimizing over the input of the pre-trained model at every sampling step. By enforcing these conditions (implicitly or explicitly), our sampler requires significantly fewer reverse steps. Therefore, we refer to our method as Step-wise Triple- Consistent Sampling (SITCOM). Compared to SOTA baselines, our experiments across several linear and non-linear tasks (with natural and medical images) demonstrate that SITCOM achieves competitive or superior results in terms of standard similarity metrics and run-time. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  3. Automated marker makers (AMMs) are decentralized exchanges that enable the automated trading of digital assets. Liquidity providers (LPs) deposit digital tokens, which can be used by traders to execute trades, which generate fees for the investing LPs. In AMMs, trade prices are determined algorithmically, unlike classical limit order books. Concentrated liquidity market makers (CLMMs) are a major class of AMMs that offer liquidity providers flexibility to decide not onlyhow muchliquidity to provide, butin what ranges of pricesthey want the liquidity to be used. This flexibility can complicate strategic planning, since fee rewards are shared among LPs. We formulate and analyze a game theoretic model to study the incentives of LPs in CLMMs. Our main results show that while our original formulation admits multiple Nash equilibria and has complexity quadratic in the number of price ticks in the contract, it can be reduced to a game with a unique Nash equilibrium whose complexity is only linear. We further show that the Nash equilibrium of this simplified game follows a waterfilling strategy, in which low-budget LPs use up their full budget, but rich LPs do not. Finally, by fitting our game model to real-world CLMMs, we observe that in liquidity pools with risky assets, LPs adopt investment strategies far from the Nash equilibrium. Under price uncertainty, they generally invest in fewer and wider price ranges than our analysis suggests, with lower-frequency liquidity updates. In such risky pools, by updating their strategy to more closely match the Nash equilibrium of our game, LPs can improve their median daily returns by $116, which corresponds to an increase of 0.009% in median daily return on investment (ROI). At maximum, LPs can improve daily ROI by 0.855% when they reach Nash equilibrium. In contrast, in stable pools (e.g., of only stablecoins), LPs already adopt strategies that more closely resemble the Nash equilibrium of our game. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026
  4. Free, publicly-accessible full text available June 25, 2026
  5. Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a “paddle-shaped” PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids. 
    more » « less
  6. The role of the linker (the group connecting viologen moieties to peptide-based backbones) in electron transfer was studied. The backbone dictated the mechanism of electron transfer, whereas the linker length altered the rate of electron transfer. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025